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The first application of Baylis–Hillman adducts in the synthesis of azetidines is reported. The synthesis
involves a one-pot, high yielding and highly diastereoselective annulation of unmodified Baylis–Hillman
adducts with N-arylphosphoramidates to afford 1,2-disubstituted azetidine-3-carbonitriles/carboxylates,
which are the precursors of biologically versatile azetidine-3-carboxylic acids.

� 2008 Elsevier Ltd. All rights reserved.
Azetidines constitute an important class of compounds because
of their interesting pharmacological activities and synthetic utility.
Whereas the strain associated with the azetidine ring system leads
to difficulties in its synthesis, functionalization and modification, it
is advantageous for its synthetic applications involving ring-open-
ing reactions. Over the past few years, several functionalized azeti-
dines have been utilized as masked 1,4-dipoles for the construction
of five- and six-membered azaheterocycles.1

L-Azetidine-2-carboxylic acid (L-Aze) is the first known example
of a naturally occurring azetidine,2 and it has shown some unique
and potentially useful biological activity.3 Following this first
discovery, many natural products such as mugineic acid,4 20-
deoxymugineic acid,5 nicotianamine,6 medicanine,7 antifungal
and antibiotic polyoxins,8 substituted azetidine-2,4-dicarboxylic
acids,9 and pharmacologically important molecules such as throm-
bin inhibitors melagatran and exenta10 have been reported to
incorporate L-Aze in their structure. As a constrained a-amino acid,
L-Aze has found many applications in the modification of peptide
conformations11 and in asymmetric synthesis.12

Owing to the greater hydrolytic stability of b-amino acid deriv-
atives, they are advantageous over a-amino acid derivatives. Thus,
azetidine-3-carboxylic acid, a constrained b-amino acid isomeric to
L-Aze, has also been used for the preparation of a variety of phar-
maceutically active compounds, including CCR5 receptor modula-
tors, procollagen C-proteinase inhibitors, tryptase inhibitors, IL-5
ll rights reserved.

: +91 5322460533.
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inhibitors, growth hormone secretagogues and others.13 Several
methods for the synthesis of azetidine-3-carboxylic acid and its
1-/1,2-disubstituted analogues are available in the literature.14

However, all of these reported methods involve multistep syn-
thetic operations, and the starting materials are not so readily
available. Thus, a convenient synthesis of new 1,2-disubstituted
azetidine-3-carboxylic acids, the target of present investigation,
is interesting from both chemical and pharmacological viewpoints.

The Baylis–Hillman reaction is a synthetically useful and atom-
economical carbon–carbon bond forming reaction yielding func-
tionalized allylic alcohols, thereby providing handles for further
manipulation in a multitude of synthetic organic transformations.
Baylis–Hillman (BH) adducts incorporate three chemospecific
groups, viz. a hydroxyl group, a double bond and an electron-with-
drawing group (EWG). These groups can be tailored appropriately
to generate an array of cyclic scaffolds directly from the BH
adducts. Very recently, an excellent review has covered applica-
tions of BH adducts in the synthesis of cyclic frameworks.15 How-
ever, until now, BH adducts have not been used for the synthesis of
azetidines.

Considering the above points and our ongoing efforts to develop
new convenient cyclization processes,16 we report herein a one-
pot synthetic protocol for hitherto unknown azetidine-3-carbonitr-
iles/carboxylates utilizing BH adducts as the substrate. The carbo-
nitriles/carboxylates thus obtained could be easily hydrolyzed into
the target azetidine-3-carboxylic acids.17,18 Initially, we tried a
one-pot sequential reaction involving the aza-Michael addition of
the anion 3 of phosphoramidate 2 to acrylonitrile/methyl acrylate
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Scheme 2. A plausible mechanism for the formation of azetidines 5 from BH
adducts 7.

Table 1
Synthesis of functionalized azetidines 5
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followed by addition–cyclization with aldehyde 4. However, the
corresponding functionalized azetidines 5 were obtained in only
21–30% yields (Scheme 1, Route B). The major products of the reac-
tion were the Schiff bases 6 formed in 66–74% yields (Scheme 1,
Route A). In order to improve the yield of azetidines 5, we turned
our attention to combine aldehyde 4 and acrylonitrile/methyl acry-
late 1 via the BH reaction followed by cyclization of the resulting
BH adduct 7 to the corresponding azetidines 5 in a one-pot proce-
dure (Scheme 2). Fortunately, this procedure worked well and the
desired azetidines 5 were obtained in high yields (84–93%) without
formation of the Schiff base 6 in any appreciable amount. The req-
uisite BH adducts 7 were prepared employing the known
method.19

In the present one-pot procedure, diethyl N-arylphosphorami-
dates 2 were treated with sodium hydride in dry benzene to gen-
erate anion 3 in situ, which underwent aza-Michael addition to
BH adducts 7 followed by cyclization of adduct 8 to afford the
azetidine-3-carbonitriles/carboxylates 5 in 84–93% yields (Table
1).20 The formation of azetidines 5 is best explained through intra-
molecular attack of the alkoxide ion 8 on the phosphorus atom
(Scheme 2). The representative alkoxides 8a (Ar1 = Ar2 = Ph,
EWG = CN) and 8g (Ar1 = Ar2 = Ph, EWG = COOMe) could be iso-
lated as their parent alcohols 9a and 9g in 42–51% yields, which
could be easily converted into the corresponding azetidines 5a
and 5g in 94–96% yields under the same reaction conditions.21

The high affinity of phosphorus for oxygen is the main driving force
for the present cyclization reaction.

The annulation of BH adducts 7 to functionalized azetidines 5
was highly diastereoselective and afforded exclusively the trans
isomers 5. The trans stereochemistry of azetidines 5 was assigned
on the basis of the 1H NMR spectra by comparison of the J values of
2-H and 3-H with very similar 1,2-disubstituted azetidine-3-carbo-
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Compound Ar1 Ar2 EWG Timea (h) Yieldb,c (%)

5a Ph Ph CN 4 87
5b Ph 4-O2NC6H4 CN 4 89
5c Ph 4-C1C6H4 CN 5 85
5d 4-CH3C6H4 Ph CN 4 88
5e 4-CH3C6H4 4-O2NC6H4 CN 3 93
5f 4-CH3C6H4 4-C1C6H4 CN 5 89
5g Ph Ph COOMe 5 84
5h Ph 4-O2NC6H4 COOMe 4 87
5i Ph 4-C1C6H4 COOMe 5 84
5j 4-CH3C6H4 Ph COOMe 4 86
5k 4-CH3C6H4 4-O2NC6H4 COOMe 3 91
5l 4-CH3C6H4 4-C1C6H4 COOMe 5 90

a Time required for completion of step (ii).
b Yield refers to pure products after column chromatography.
c All compounds gave C, H and N analyses within ±0.36% and satisfactory spectral

(IR, 1H NMR, 13C NMR and EIMS) data.
nitriles/carboxylates reported in the literature,22 whose configura-
tion had already been confirmed by X-ray crystallographic
studies.17 Furthermore, the absence of any measurable NOE be-
tween 2-H and 3-H indicates that these protons are on opposite
faces of the molecule.

In summary, we have developed a one-pot procedure for a
highly diastereoselective synthesis of 1,2-disubtituted azetidine-
3-carbonitriles/carboxylates which are precursors of 3-carboxylic
acid analogues via annulation of BH adducts with N-arylphosph-
oramidates. This synthetic protocol presents the first application
of the BH reaction in the field of azetidines.
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